They say time heals all wounds, but in reality, skin healing requires more than just time. Like a finely honed symphony, a myriad of factors—immune chemicals, growth factors, skin cells and other structural elements of the skin tissue microenvironment—must converge to drive a sequence of physiological events that repair breaches to the skin barrier.
However, for some people, this process can come to a halt and stall proper healing, resulting in chronic wounds: a serious and costly health concern.
“Wound management is stretching the limits of health systems globally, challenging clinicians to evaluate the effectiveness of their treatments and deliver appropriate care to their patients,” said Jayakumar Perumal from A*STAR’s Institute of Bioengineering and Bioimaging (IBB), a Senior Scientist in the laboratory of Malini Olivo, Deputy Executive Director of IBB, a Distinguished Institute Fellow and Director of the Translational Biophotonics Laboratory (TBL) in IBB.
Perumal explained that current methods for monitoring chronic wounds are unsophisticated and inaccurate, and often rely on subjective visual inspections and manual measurements. Furthermore, these methods capture only the tip of the iceberg—they do not consider the dynamic biochemical activity happening beneath the skin’s surface, making it difficult to personalise treatment strategies.
Olivo and Perumal led a team that developed a next-generation dressing that can 'read' biomarkers to provide valuable information on a wound’s healing status. Their innovation uses cellulose fibres (CF) with silver nanoparticles to wick wound fluid from the skin and make it perceptible to surface-enhanced Raman spectroscopy (SERS).
SERS is a molecular fingerprint technique that can rapidly and simultaneously identify multiple proteins in complex biological systems. The team configured the SERS-based sensors in their dressing to pick up a panel of biomarkers known to be associated with impaired wound healing, including matrix metalloproteinase-9 (MMP-9) and interleukins (IL).
“We know that after a few weeks, non-healing wounds exhibit higher MMP-9 concentrations compared to healing wounds,” Perumal said, with IL1-α and IL-1β also displaying a similar relationship. In their proof-of-concept study, the scientists found that their CF SERS dressing was highly accurate and sensitive, detecting even trace amounts of biomarker proteins in wound fluid.
CF SERS dressings could one day be used as a cheap, comfortable, non-invasive, continuous monitoring system for chronic non-healing wounds. Efforts to commercialise the technology are already underway, and the team recently wrapped up a clinical trial to test CF SERS in a cohort of about 30 chronic wound patients.
“We are exploring the possibility of doing a large-scale clinical trial to validate biomarkers that differentiate healing from non-healing wounds,” concluded Perumal.
The researchers have filled a provisional patent for their SERS biosensing platform innovation.
The A*STAR-affiliated researchers contributing to this research are from the Institute of Bioengineering and Bioimaging (IBB).